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The concept of ventricular remodelling was focused in
1985, from fundamental work that has come to have
immense clinical application. Janice Pfeffer and
colleagues1 studied the causes and patterns of increased
left-ventricular dilation and impaired ventricular
function after coronary artery ligation in rats (figure 1).2

They referred to such changes in the ventricular
architecture as remodelling. Post-infarct remodelling

was further defined in 1990 as the changes in ventricular
topography, occurring both acutely and chronically after
infarction and identified as an important therapeutic
target.3

Since then, the concept has been applied to various
ventricular patterns occurring in response to the
mechanical stresses of other heart diseases. Here, we
first contrast the changes induced by pressure and
volume loads (figure 2)2 and describe the molecular
mechanisms implicated. Corresponding clinical
patterns include aortic stenosis (pressure overload) and
mitral regurgitation (volume overload). We then focus
on the more complex changes in the infarcted heart, in
which left-ventricular remodelling is a combination of
infarct expansion, pressure overload, and volume
overload. Finally, we look at the controversies regarding
the best methods to reverse such remodelling towards
normality. Although progressive left-ventricular re-
modelling is a key feature of heart failure and affects the
clinical outcome,4 this paper is not about overt heart
failure, but rather is an analysis of the basic and clinical
data relating to the remodelling patterns that are
relevant to heart failure.
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Ventricular remodelling describes structural changes in the left ventricle in response to chronic alterations in

loading conditions, with three major patterns: concentric remodelling, when a pressure load leads to growth in

cardiomyocyte thickness; eccentric hypertrophy, when a volume load produces myocyte lengthening; and myocardial

infarction, an amalgam of patterns in which stretched and dilated infarcted tissue increases left-ventricular volume

with a combined volume and pressure load on non-infarcted areas. Whether left-ventricular hypertrophy is adaptive

or maladaptive is controversial, as suggested by patterns of signalling pathways, transgenic models, and clinical

findings in aortic stenosis. The transition from apparently compensated hypertrophy to the failing heart indicates a

changing balance between metalloproteinases and their inhibitors, effects of reactive oxygen species, and death-

promoting and profibrotic neurohumoral responses. These processes are evasive therapeutic targets. Here, we

discuss potential novel therapies for these disorders, including: sildenafil, an unexpected option for anti-transition

therapy; surgery for increased sphericity caused by chronic volume overload of mitral regurgitation; an antifibrotic

peptide to inhibit the fibrogenic effects of transforming growth factor �; mechanical intervention in advanced heart

failure; and stem-cell therapy.

Search strategy and selection criteria

We searched MEDLINE using “remodelling” as the key word
in combination with “myocardial infarction”, “heart failure”,
“aortic stenosis”, “mitral regurgitation”, “pressure overload”,
and “volume overload”. We searched all major cardiovascular
journals: The Lancet, British Medical Journal, New England
Journal of Medicine, and the Journal of the American Medical
Association for similar and related articles. Reference lists in
key articles were searched to identify older publications. More
than 300 articles were analysed.
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Figure 1: Three major patterns of ventricular remodelling 
Patterns are: concentric left-ventricular hypertrophy, when a pressure load leads to growth in cardiomyocyte
thickness (dotted lines represent left ventricle growing inwards); eccentric hypertrophy, when a volume load
produces myocyte lengthening; and post-infarct, when the stretched and dilated infarcted tissue increases the 
left-ventricular volume with a combined volume and pressure load on the non-infarcted zones (dotted lines
represent combined effects of concentric and eccentric hypertrophy). Fibrosis contributes to all three patterns
(fibrosis in post-infarct model not shown in figure). Figure adapted from reference 2, with permission.
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Does left-ventricular hypertrophy constitute an
adaptive or maladaptive response to the
increased pressure load? 
Wall-stress hypothesis 
This controversy first needs exploration of the classic
wall-stress hypothesis, and then analysis of the
molecular pathways that can be transgenically altered to
modify the wall-stress response. According to Grossman’s
systolic-stress-correction hypothesis,5 pressure overload
causes myocytes to grow in width to increase wall
thickness (figure 1),2 thereby regulating the pressure-
induced increase in wall stress. This concept relies on
the Laplace law, whereby increased wall thickness
reduces wall stress. If the hypertrophy is adequate, the
systolic wall-stress normalises and the heart is
mechanically compensated. This effect corresponds to
Meerson’s compensatory hyperfunction of the heart
produced by experimental constriction of the aorta.6

Thereafter, the left ventricle undergoes transition to
failure and dilation.6 With respect to a sustained volume
load, Grossman proposed that increased diastolic wall
stress gave rise to myocyte elongation with eccentric
hypertrophy, with an increased ventricular diameter.
Extensive studies of hypertrophic signalling pathways
have questioned the wall-stress hypothesis. 

Pressure-induced adaptive and maladaptive signals 
A fundamental hypothesis is that, according to the
nature of signalling stimulus, the myocyte can either
survive, leading to beneficial hypertrophy,7 or undergo
apoptosis (programmed cell death), which promotes left-
ventricular failure and dilation.8 These molecular path-
ways therefore result in either adaptive or maladaptive
patterns of hypertrophy.

One such pathway takes place when angiotensin II is
released from the myocardium in response to an abrupt
mechanical load9 or to increased systolic wall stress.10,11

After angiotensin II binds to its receptor, it activates the
G protein Gq, and then the � isoform of protein kinase
C,12 to initiate signalling to the enzyme complex of
mitogen-activated protein (MAP) kinase (figure 2).2

Some of the MAP-kinase components promote pro-
survival signalling, whereas others stimulate apoptosis
and decrease cell survival.8 Increased apoptosis might
also directly cause contractile protein dysfunction.13

Other maladaptive pathways include those that promote
fibrosis in response to angiotensin II, aldosterone,14 and
transforming growth factor (TGF) �.15,16 Cytokines such
as tumour necrosis factor (TNF) � seem to have
bidirectional effects, with low concentrations being
protective and high concentrations being maladaptive.17

Thus, if pressure-induced stimulation of angio-
tensin II leads to maladaptive growth rather than
adaptive growth and apoptosis rather than survival, then
genetic interruption of this pathway would lessen
hypertrophy yet protect the myocardium. In a mouse
model with transgenic inactivation of Gq, hypertrophy

from pressure loading was less than predicted with
decreased correction of wall stress.18 However,
contractility in the transgenic model was better than
that in the wild type with more left-ventricular
hypertrophy (figure 3).2,18,19 This finding argues against
the wall-stress model, but does not imply that all
hypertrophy is deleterious. For example, in another
transgenic model when only extracellular-signal-
regulated kinase (ERK) was activated,19 the end result
was an adaptive hypertrophy with normalised wall-
stress and full compensation for an increased load
(figure 3).2

Another adaptive pressure-induced process begins
with insulin-like growth factor (IGF) I,11 which has a
signal system involving the potent growth-promoting
enzyme protein kinase B (PKB or AKT). Such
stimulation has prosurvival effects, both promoting
growth and inhibiting apoptosis via many downstream
regulators.13 Another protective path, not shown in
figure 2,2 is the formation of cyclic guanosine
monophosphate (GMP) in response to atrial natriuretic
peptide, thereby restricting hypertrophy.20
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Figure 2: Hypertrophic signalling pathways 
Pathways on the left lead predominantly to myocyte survival (adaptive hypertrophy), with those on the right
leading to death by apoptosis and fibrosis (maladaptive hypertrophy). A major pathway leads from angiotensin II
to mitogen-activated-protein (MAP) kinase that, depending on which member of the kinase family mediates the
stimulus, diverges either to prosurvival effects via extracellular-regulated kinase (ERK) or to proapoptosis via Jun N-
terminal kinase (JNK). Angiotensin II also leads to fibrosis. Cytokines such as cardiotrophin 1 and tumour necrosis
factor (TNF) � could have prosurvival effects at low-level stimulation, or proapoptotic effects at high pathological
levels in the case of TNF�. Signalling pathways are not necessarily clear-cut in their sequences, although the
patterns shown here indicate the overall pathways presently proposed. PKC=protein kinase C.  PKB=protein
kinase B. IGF-I=insulin-like growth factor. TGF�=transforming growth factor �. NF�B=nuclear factor �B.
I�B=inhibitor of NF�B. Figure adapted from reference 2, with permission. 
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Can these experimental studies be applied to human
beings? 
Although there have been several studies in the failing
heart with tissue obtained during the implantation of a
left-ventricular assist device, there are few studies on the
hypertrophic heart. In aortic stenosis, strong evidence
indicates that growth signals such as angiotensin II and
TGF� are associated not only with myocyte growth, but
also with maladaptive fibrosis, myocyte degeneration,
and eventual myocyte loss.16 Epidemiologically, left-
ventricular hypertrophy is a major risk factor for
cardiovascular morbidity and mortality, independent of
blood pressure level.21

Opinion 
With respect to extensive animal and scarce human data,
good evidence supports the proposal that a sustained
pressure load is often due to a mixed stimulus that
produces both beneficial adaptive and adverse maladap-
tive remodelling. The occurrence of maladaptive re-
modelling could explain why the wall-stress correction
hypothesis does not always apply.

Can cellular mechanisms account for the
transition from apparently compensated
hypertrophy to the failing heart? Could these
findings lead to new therapy? 
Meerson6 contrasted the anatomical changes in
concentric left-ventricular hypertrophy with the
pathological changes (such as ventricular dilation) in
failure. What causes this transition? Currently, one
hypothesis states that maladaptive biological forces
overwhelm adaptive forces, but how does this event
occur? Three major hypotheses have been proposed. 

(1) Role of metalloproteinases and their inhibitors 
The extracellular matrix, synthesised by cardiac
fibroblasts (figure 1),2 usually maintains the myocardial
architecture. Increased collagen synthesis causes fibrosis
when induced by angiotensin II, TGF�,17 and
aldosterone.22 Metalloproteinases are enzymes that break
down collagen, with their actions restricted by TIMPs
(tissue inhibitors of matrix metalloproteinases; figure 4).2

Of the many isoforms, the roles of metalloproteinase 923

and TIMPs 1 and 224 are important in human beings.
Once the metalloproteinase-TIMP balance is upset in
favour of increased metalloproteinase activity, collagen
crosslinks degenerate so that the hypertrophied left
ventricle begins to dilate,25 which has also been recorded
in patients.26 Ventricular dilation could precipitate further
degeneration through many mechanisms, including
neurohumoral activation, stretch-induced apoptosis, and
oxidative stress.27

(2) Role of oxidative stress and nitric oxide synthase 
Growth initiators including angiotensin II, � agonists,
TNF�, and mechanical strain also promote the
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Figure 3: When compensated hypertrophy is not necessarily compensated 
Left panel: left-ventricular hypertrophy in which wall stress, the relation between the radius of the ventricular
chamber (R) and the thickness of the ventricular wall (h), is normalised in response to sustained pressure load.
Contrary to the wall-stress correction hypothesis, left-ventricular mechanical function is reduced and not
maintained. Middle panel: reduced hypertrophic response to pressure load in transgenic mice with inhibited Gq
signalling,18 which means that the agonists of angiotensin II and related receptors such as endothelin that lead
to maladaptive signalling (figure 2) cannot operate. The reduced hypertrophy is shown by comparison of the
ventricular-wall thickness (red) with the ventricular pattern in the wildtype as shown by the two outlines, which
match the extent of left-ventricular hypertrophy in the wildtype. Although transgenic wall stress has increased
as shown by the lower ratio of wall thickness (h) to the radius (R), mechanical function is less reduced than in
the so-called compensated heart of the wild type (left panel). Right panel: in a different transgenic model with
chronic activation of extracellular regulated kinase (ERK), a truly compensated well-adapted state is reached.19

Figure adapted from reference 2, with permission.
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Figure 4: Proposed transition from concentric hypertrophy to dilated failing
left ventricle 
Note the role of matrix metalloproteinases that break down collagen compared
with the opposing role of TIMPs. Primary stimulus to the increased collagen is
shown as stretch-induced formation of angiotensin II. Metalloproteinases
disrupt collagen crosslinks (red lines) with cell restructuring and left-ventricular
dilation. ROS=reactive oxygen species. Figure adapted from reference 2, with
permission.
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formation of reactive oxygen species (ROS).28 ROS
stimulation potentially has both adaptive and
maladaptive signalling consequences, from a
hypertrophic response at low rates of ROS production to
fibrosis29 and myocyte death at high rates.30 ROS
formation is also stimulated by endothelial nitric oxide
synthase (eNOS). In a transgenic eNOS knockout model
with low ROS production, severely pressure-loaded
hearts developed only modest concentric hypertrophy
with little fibrosis and without left-ventricular cavity
dilation.28 Consonant with overall knowledge,30 high
rates of ROS production can thus contribute to the
transition from left-ventricular hypertrophy to heart
failure. Although these findings may be controversial,31

there has been recent confirmation of the concept.32

Notably, plasma and pericardial markers of oxidative
stress are increased in patients with chronic systolic
failure of the left ventricle, with these increases related to
the clinical severity of heart failure.33,34

(3) Neurohumoral activation 
Adrenergic and renin-angiotensin-aldosterone activation
is induced by ventricular dilation and can be expected to
quicken the transition to overt clinical failure. Once
adrenergic signalling and cellular hyperadrenergic
signalling are initiated, the former probably exaggerates
the activation of metalloproteinases,35 whereas the latter
lead to myocardial �-receptor downregulation and
hyperphosphorylation, with inhibition of the sarco-
lemmal calcium-release channels,36 thereby causing
further mechanical dysfunction of the left ventricle.
Hyperadrenergic signalling also leads to cellular calcium
overload with a threat of apoptotic cardiomyocyte death.37

Additionally, increased myocardial angiotensin II
augments apoptosis via increased cytosolic calcium,37

and also by ROS formation. Furthermore, angiotensin II
promotes the expression of the profibrotic mediator,
TGF�.38 Conversely, angiotensin-converting-enzyme
(ACE) inhibition blocks TGF� and lessens myocardial
and perivascular fibrosis.38 Raised concentrations of
circulating angiotensin II lead to increased renal
reabsorption of sodium with water retention and an
increased volume load on the heart with more stretch-
induced abnormalities. Increased angiotensin-II-
mediated release of aldosterone promotes both sodium
retention and cardiac fibrosis. The combination of
fibrosis and increased cell death leads to a disorganised,
poorly contracting myocardium.16

Protective role of cyclic GMP—sildenafil as potential
treatment option 
The inhibitory cardiovascular signals mediated by 
cyclic GMP combat harmful adrenergic effects.39

Furthermore, genetically increased synthesis of cyclic
GMP inhibits pressure-induced pathological remodel-
ling.40 Sildenafil inhibits the breakdown of cyclic GMP to
deactivate many growth pathways and to prevent and

reverse hypertrophy and failure induced by aortic
constriction.40 Via cyclic-GMP-induced formation of
nitric oxide, sildenafil could also be a systemic
vasodilator in patients with heart failure to reduce
vascular stiffness.41 In lungs congested by heart failure,
sildenafil lowers pulmonary vascular resistance and
increases alveolar gas exchange.42 Taken together, these
data strongly suggest the desirability of large trials with
sildenafil in both developing and established heart
failure.

Opinion 
To prevent hypertrophic hearts from overt failure, the
activity of metalloproteinases could be reduced by the
stimulation or use of TIMPs or by the restriction of ROS
production. The problem is that there are many
isoforms of both metalloproteinases and TIMPs, as well
as multiple sources of ROS. Therefore, despite
theoretical promise, human application will be difficult.
Sildenafil is more promising and is already in the early
phases of testing. ACE inhibitors and �-adrenergic
blockers should, theoretically, be started very early to
reduce the progression of heart failure.

Aortic stenosis: do clinical findings match basic
science concepts? 
Aortic stenosis is a classic cause of pressure-induced
concentric remodelling.16,26,43 To what extent do clinical
observations fit the animal data and support the
Meerson6 progression from concentric left-ventricular
hypertrophy to failure? This particular issue will never
be solved by prospective studies, in view of the ethical
concerns about the non-treatment of patients with
symptomatic aortic stenosis. However, for aortic
stenosis, postoperative regression of left-ventricular
hypertrophy provides reverse longitudinal evidence,44

from which the presumed pattern of pre-operative
progression can be inferred but not proven.

A fundamental observation in aortic stenosis is that
the increase in intraventricular pressure stimulates the
ratio of left-ventricular wall thickness to chamber
volume.45 In unoperated aortic stenosis, so-called typical
concentric hypertrophy takes place with impaired
diastolic filling, a healthy ejection fraction, and often
normal cardiac output.46 After valve replacement, these
changes all revert towards normal.46,47 In severe and
probably sustained aortic stenosis, the cardiac output
falls, the end-diastolic pressure rises, and the left-
ventricular cavity dilates, while still with striking
diastolic dysfunction.44

In a study of symptomatic aortic stenosis, about half
the affected individuals had clinical heart failure, and
about a third had eccentric hypertrophy.48 Post-
operatively, reductions have been recorded in left-
ventricular mass and end-diastolic cavity size,49 which
return to a healthy state in the late postoperative phase
(when indexed to left-ventricular mass), as does diastolic
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function.44 Reduced left-ventricular ejection fraction and
increased left-ventricular cavity size before surgery are
associated with poor postoperative recovery,50 which has
resulted in surgery now being undertaken earlier. In
individuals with aortic stenosis and symptoms of heart
failure, eccentric hypertrophy and depressed systolic
function are often both present, but absent in those
without clinical heart failure.51

An important finding from clinical studies is that
pressure-induced concentric hypertrophy can coexist
with both left-ventricular diastolic dysfunction and cavity
dilation.44,49 The cellular pattern of left-ventricular
hypertrophy includes thickened myocytes, cell death,
and increased fibrous tissue.44,49 These findings are
consistent with the basic science concepts of both
adaptive and maladaptive cell signalling in pressure-
induced left-ventricular hypertrophy. We propose that
these clinical studies show that the pressure-induced
starting point in aortic stenosis is concentric
hypertrophy with early impairment of diastolic filling,50

followed by increased left-ventricular filling pressures
with reverse changes taking place after aortic-valve
surgery.44,49 At a cellular and signalling level, early
activation of maladaptive growth signals could occur,
leading to deleterious remodelling16,52 with myocyte
degeneration and loss.16 Increasing fibrosis is associated
with complex changes in metalloproteinase activity.26,53

This cellular progression is matched by increasing left-
ventricular failure (figure 4),2,16 which suggests that early
concentric hypertrophy deteriorates into a dilated
eccentric pattern. No clinical longitudinal data directly
proves this sequence of events, although increased left-
ventricular mass does coincide with increased left-
ventricular systolic dysfunction and heart failure.54

Opinion
In clinical aortic stenosis, Meerson’s stage of
compensatory hypertrophy6 is not truly compensated but
already contains maladaptive seeds of future failure,
hence progressively blending into eccentric dilation with
systolic heart failure. This conclusion is important,
challenging some conventional concepts. 

Do different pathways exist for pressure-
induced and volume-induced hypertrophy? 
Graded mechanical stress with large left-ventricular
volumes results in increasing amounts of TNF� being
released from the healthy myocardium.55 Passive
stretching of ventricular muscle promotes the synthesis
of TNF� mRNA.56 The low rate of TNF� stimulation
interlinks with other cytokines such as cardiotrophin 117

acting on the gp130 receptor to promote prosurvival
pathways (figure 2),2 so that sarcomere units form in
series to result in eccentric hypertrophy.57,58 Cardio-
trophin 1 also participates in the response to pressure
loading to protect from apoptotic death.59 Increased
expression of myocardial mRNA TNF� recorded in

patients with mitral regurgitation is reversed when the
volume overload is corrected by mitral-valve surgery.60

However, TNF� excess leads to maladaptive
responses.17,61 To support this concept, circulating
concentrations of TNF� in patients are increased with
respect to the severity of heart failure in both aortic
stenosis and mitral regurgitation.62 Other maladaptive
stimuli include: (1) overstretching-induced release of
ROS with increased apoptosis and myocyte
restructuring;27 and (2) increased metalloproteinase
activity, which is associated with the breakdown of
interstitial collagen and foci of reactive fibrosis.63 These
patterns are similar to the end-stages of pressure-
induced hypertrophy (figure 4).2

Volume overload releases cardiac atrial natriuretic
peptide. In a knockout mouse without the peptide,
exaggerated cardiac hypertrophy was recorded,64 hypo-
thetically because the peptide stimulates the formation
of myocardial cyclic-GMP, which in turn inhibits hyper-
trophy.20 However, the use of human recombinant
natriuretic peptide, nesiritide, is very controversial in
clinical practice. In trained athletes with eccentric
hypertrophy, the growth pathways involve adaptive 
IGF-I (figure 2)2 rather than angiotensin II or endothelin,
which are both maladaptive in nature.65

Opinion 
Much less is known about signal systems for volume
overload than those for pressure loads. Additionally,
fewer transgenic models exist for volume overload.
Remodelling in early volume overload could be related to
stretch-induced signalling via adaptive signals such as
cardiotropin 1, low-level TNF�, cyclic-GMP, and IGF-I,
with excess TNF� and stretch-induced ROS exerting
later maladaptive effects. 

Is remodelling in mitral regurgitation volume-
induced? 
The clinical picture for volume overload differs greatly
from that for chronic pressure loading (figure 5). When
severe left-ventricular volume overload is caused by
primary chronic mitral regurgitation, it may lead to
irreversible mechanical dysfunction.66 In the chronic
compensated phase of mitral regurgitation, eccentric
hypertrophy and left-ventricular dilation increases total
stroke volume and maintains forward flow despite the
regurgitation. The chronic decompensated phase is
marked by increased end-diastolic and end-systolic
volumes. Here, ventricular dilation could increase the
degree of regurgitation and promote progression.67 The
second pathway for ejection of blood into the left atrium
tends to reduce afterload whereas the volume load
increases preload.68 Intrinsic myocardial dysfunction in
this phase could be masked by these favourable loading
conditions, allowing measures of ventricular systolic
shortening (ejection fraction, shortening fraction) to
remain within a supposedly healthy range. 
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The pathophysiology of the transition from the
compensated phase to decompensation and clinical heart
failure in chronic mitral regurgitation is poorly
understood. Loss of myofibrils,69 altered calcium
handling70 and activation of the sympathetic nervous
system71 have all been implicated. Increased ventricular
volume and mitral regurgitation might be linked in a
vicious cycle whereby regurgitation causes ventricular
dilation that in turn changes ventricular shape
(remodelling), thereby promoting progression of
regurgitation (as in other forms of secondary or functional
mitral regurgitation). The improvement in left-ventricular
contractile function in some patients after successful
valve surgery for longstanding mitral regurgitation72 and
the relation between severity of regurgitation and
outcome73 suggests that the volume overload itself
contributes to myocardial dysfunction. 

Secondary or functional mitral regurgitation refers to
regurgitation caused by ventricular remodelling that
changes the functional anatomy of the mitral complex74,75

when the papillary muscles, leaflets, and chordae are all
healthy. Such remodelling could occur in dilated
cardiomyopathy or post-infarct. Experimentally, left-
ventricular dysfunction without dilation does not result
in functional regurgitation.76 Global left-ventricular
remodelling transforms the usual ellipsoid shape of the
left ventricule to a sphere (known as increased sphericity)
to promote functional mitral regurgitation (figure 5).2,77,78

Post-infarct, a change of global or local left-ventricular
shape could change mitral functional anatomy.
Experimentally, volume overload worsens post-infarction
remodelling, causing left-ventricular enlargement and
adverse molecular and cellular effects that are reversible
on removal of the overload.79 Functional mitral
regurgitation, a consequence of remodelling, could
contribute to progressive remodelling. Surgical repair of
functional mitral regurgitation may benefit some
patients80 without affecting mortality;81 thus randomised
studies are needed.82

The importance of ventricular shape in the
development of functional mitral regurgitation is further
illustrated by passive epicardial containment that reduces
sphericity and experimentally abolishes regurgitation
completely.83 This effect is coupled with beneficial cellular
and extracellular mechanisms modifying left-ventricular
and myocyte remodelling84 and offers clinical promise.85

Is the Grossman hypothesis supported? 
Do the cellular anatomical changes in severe mitral
regurgitation correspond to Grossman’s proposal5 of
longitudinal fibre growth in chronic volume overload?
Grossman studied patients with chronic mitral or aortic
regurgitation who did not clinically have congestive heart
failure. Measurement of cardiomyocyte length and width
on human hearts is difficult and data are scarce. In
advanced idiopathic dilated cardiomyopathy, increased
metalloproteinase activity is linked to loss of collagen and
left-ventricular sphericity.63 Experimentally, after only 3
months of severe mitral regurgitation in dogs, left-
ventricular mass increased while end-diastolic volume
and wall-stress rose substantially.86 Cardiomyocyte length
increased and end-diastolic wall thickness decreased. All
these features are compatible with the Grossman
hypothesis. However, by contrast with the unchanged
peak systolic stress in patients, this variable doubled in the
dogs, because of an increased systemic vascular
resistance. In another similar model, the striking feature
was the increased length of the cardiomyocytes but with
increasing loss of myofibrils correlating with decreased
contractile function.69 Overall, the changes in cell length
fit the Grossman hypothesis, whereas further changes
could be related to the vascular resistance. 

Opinion 
The Grossman concept of volume-related cell
lengthening holds in experimental mitral regurgitation,
allowing for an increased afterload while systemic
vascular resistance rises. We propose that volume-
induced effects are self-perpetrating. Clinically, clear
guidelines exist that are based on the response of the left
ventricle to volume overload87 and on the timing of
surgical repair.72 Secondary or functional mitral
regurgitation is best prevented by strategies that control
left-ventricular function and shape, with surgical
correction in reserve.
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Figure 5: Mitral regurgitation as an example of chronic volume overload 
Left panel: Development of eccentric hypertrophy in primary mitral
regurgitation. Right panel: Increasing sphericity of left-ventricular shape in
functional mitral regurgitation after experimental microembolisation causing
cardiomyopathy. Onset of functional mitral regurgitation (red horizontal line)
induces further remodelling that aggravates the process to increase remodelling.
Stages are at (1) baseline, (2) 2 weeks, (3) 3 months, and (4) end-stage dilated
spherical thin-walled hypodynamic heart. Figure adapted from references 2 and
77, with permission.
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Post-infarct remodelling: combined volume and
pressure loads 
Here, a complex series of progressive adverse effects
takes place, including: (1) non-contractile and potentially
expanding scar tissue forming in the infarcted zone; (2)
the volume load induced by such expansion; and (3) the
pressure load induced by the increased volume load.
Additional ischaemic insults could contribute to
remodelling. Thus, a mixed pressure and especially
volume load exists,88,89 with remodelling of the entire left
ventricle in proportion to infarct size,90 with a fall in
ejection fraction in direct relation to the size of the
infarct.3 However, the increase in the left-ventricular
volume augments the stroke volume by the Starling
mechanism so that cardiac output is relatively normal.90

Figure 6 summarises the three patterns of
remodelling.89,90

Therefore, early post-infarct remodelling could be
beneficial and promote survival, but with deleterious
long-term haemodynamic consequences. In antero-
septal infarcts, the crucial issue enlarging the left-
ventricular volume is the early increase in apical regional
wall stress.91 Late ventricular enlargement is not the
result of progressive infarct expansion, but rather is
caused by an increase in the length of the remaining
contractile tissue,89 which is the pattern of volume

overload. Long-term progressive remodelling of the left
ventricle with increases in the ventricular cavity size can
occur up to 2 years post-infarct with increased
cardiovascular death even in patients treated with ACE
inhibitors.92 Conversely, seemingly minor reductions in
remodelling can be associated with decreased heart
failure and cardiovascular death.92

With respect to therapy, once the infarct has occurred,
load reduction should aim to lessen the distending or
deforming forces. ACE-inhibitor therapy helps to
attenuate the increase in apical wall stress and to reduce
dilation of the left-ventricle.91,93 This treatment acts in
part by reducing the preload and thus the left-ventricular
operating volume.94 If left-ventricular dilation is avoided,
then the pure hypertrophic response of surviving
myocytes gives haemodynamic benefit.95 Remarkably, in
predominantly reperfused patients with anteroseptal
infarcts receiving an ACE inhibitor, only about half had
an increase in left-ventricular volume at 90 days,91 and
22% of those with abnormal ejection fractions on day 1
had fully recovered by 90 days.96 Such early recovery
could be explained by postreperfusion stunning or
intrinsic repair of the surviving left-ventricular myo-
cytes, as recorded in animals,88 with perhaps intrinsic
myocardial self-repair.97 ACE-inhibitor therapy at high
doses attenuates left-ventricular dilation more than at
low doses.91 � blockade also reduces the afterload, and
hence the intracavity systolic pressure. In patients with
heart failure who have already been treated with an ACE
inhibitor, carvedilol increased the ejection fraction while
reducing end-diastolic left-ventricular volumes (both
systolic and diastolic) at 12 months.98 Load-independent
effects of the blockade of the renin-angiotensin-
aldosterone system (RAAS) on the progression of
atherosclerosis could also have a role by lessening
reinfarction.

Will our current understanding of the molecular
biology of post-infarct remodelling lead to new
therapies or merely provide more sophisticated
explanations for existing therapy? 
Relation between fibrosis and post-infarct function 
In the post-infarct period, enhanced activity of
metalloproteinases breaks down the existing collagen
while promoting the formation of new collagen that is
poorly crosslinked,3,99,100 which in turn could explain the
side-to-side slippage of myocytes that hypothetically
contributes to ischaemic ventricular remodelling.101–104

The standard argument for slippage is elongation of
myocytes with thinning of the left-ventricular wall.
Other explanations include altered myocyte transverse
shape, from round to ellipsoid.102 Slippage in human
hearts remains a controversial concept that has not 
been examined with the same rigour as in animal 
hearts. However, whenever metalloproteinase activity
increases,26,63 impaired collagen crosslinks could
promote slippage. With respect to late remodelling, the
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Figure 6: Post-infarct left-ventricular remodelling patterns 
(A) Simplified overall pattern based on animal models. There is potential for
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infarct phase and (C) late post-infarct phase derived from contrast
ventriculography. Black=extent of preserved movement of endocardial surface
in non-infarcted zone. Note substantial remodelling in accordance with the
animal models, with emphasis on progressively increased volume of left
ventricle. SNS=sympathetic nervous system. Figure adapted from references 89
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balance between TIMPs and metalloproteinases changes
with time in mice infarcts. Late activation of TIMPs
occurs, hence inhibiting metalloproteinases and
increasing fibrosis in the already dilated hearts.105 This
late fibrosis is associated with increasing activity of
TGF�1, the fibrogenic cytokine.16,105,106

How can post-infarct fibrosis be contained? 
Two interlinked signalling systems could be modified;
the TGF� system107,108 and RAAS. TGF� is implicated in
left-ventricular remodelling107 and activates fibroblasts to
promote fibrosis.38,109 ACE inhibitors restrict the
breakdown of a novel peptide that lessens TGF�
expression.39 Atorvastatin inhibits TGF�-mediated
collagen production by cardiac fibroblasts.110

In overall RAAS, the unconventional aspect is that
remodelling after myocardial infarction increases the
sympathetic drive, thereby activating brain angio-
tensinogen, which experimentally promotes myocyte
hypertrophy, tissue aldosterone, interstitial fibrosis, and
left-ventricular dilation.111 Apart from systemic activation
of RAAS, there is probably local cardiac activation.59,112

Some remodelling after myocardial infarction is
independent of angiotensin-II blockade, probably
because of persistent cardiac aldosterone synthesis.22

Spironolactone can improve experimental remodelling
after myocardial infarction, even if infused centrally.111

Experimentally, eplerenone slows the transition from
hypertrophy to failure while reducing fibrosis, oxidative
stress, and inflammation.14 These data on RAAS blockade
by ACE inhibitors and aldosterone blockers correlate
with many clinical studies. For example, spironolactone
added to ACE-inhibitor therapy lessened remodelling,
improved the ejection fraction, and reduced markers of
myocardial fibrosis.113 The new data showing that
adrenergic activation promotes central activation of
angiotensinogen, suggests an additional mode of action
of � blockade. Furthermore, � blockade should inhibit
the activation of metalloproteinase 2 associated with
increased circulating norepinephrine in human studies.35

Endothelin is major vasoconstrictor and growth-
promoting peptide with increased circulating
concentrations in heart failure. Disappointingly,
endothelin-A antagonism has added little to previous
RAAS blockade, which inhibits endothelin synthesis.
Other measures include stimulation of adaptive pro-
survival pathways (figure 2).2 Overexpression of IGF-I in
mice restricts apoptotic and necrotic cell death in viable
myocardium, decreasing left-ventricular dilation and
cardiac hypertrophy.114 Prosurvival signalling is probably
via the AKT pathway,115 which is stimulated by IGF-I,
insulin, and statins to lessen experimental reperfusion-
induced apoptosis.116

Opinion 
Laboratory and clinical patterns accord with each other.
ACE inhibition for heart failure after myocardial

infarction, evolved from rat experiments, remains the
mainstay of clinical therapy, with new impressive data
for the addition of aldosterone blockade and � blockade.
We have gained a better understanding of how these
therapies work rather than finding new therapies.
Further modulation of fibrosis beyond the effects of
angiotensin II and aldosterone blockade is desirable but
not simple to achieve. TGF� has become a potential
therapeutic target of ACE inhibition and statins. 

Will mechanical-induced intervention with
remodelling lead to new non-mechanical
therapies? 
Restoration of function in advanced heart failure can
occur in response to various experimental interventions
such as a new left-ventricular external pocket
constraining device that improves left-ventricular
dimensions and peri-infarct collagen,84 biventricular
pacing,117,118 and left-ventricular assist devices.119,120

Tissue sampling before and after implantation of such
an assist device shows a host of favourable changes
called reverse remodelling. Anatomically, there is
regression of cell thickening and elongation.121

Improved myocyte contractile activity can be related to
the recovery of function of the sarcoplasmic reticulum120

and increased L-calcium-channel density122 including
reverse molecular remodelling of the genes controlling
calcium cycling.123 Calcium content of the myocytes
then rises,124 after which matrix metalloproteinases are
downregulated with reduced collagen damage.125 There
is then increased �-adrenergic-receptor density and
response to stimulation,119 with reduced hyperphospho-
rylation of the sarcoplasmic reticulum,126 which is
thought to promote calcium leakage from the
sarcoplasmic reticulum. Similar reverse remodelling of
the sarcoplasmic reticulum can result from �
blockade.36

Opinion 
Although some reverse remodelling can be obtained 
by pharmacological substances, the concept that
mechanical intervention induces reverse remodelling is
important and will strengthen the views of inter-
ventionalists. 

Stem-cell therapy: pipe dream or practicality? 
Innovative animal experiments have shown that
progenitor cells from various sources can populate
acutely damaged regions of the myocardium, re-
furbishing functional units and reversing remodelling.127

Whether bone-marrow-derived stem cells can acquire
sufficient cardiomyocyte-like properties to reconstitute
myocardium lost by infarction is uncertain. By contrast,
both myocytes and coronary vessels can be regenerated
from a cardiac stem-cell compartment that can
regenerate in vitro.97,128 Injection of cardiac stem cells
with a bioengineered scaffolding and selective growth
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factors such as insulin-like growth factor could provide
enough myocardial regeneration and mechanical
support to rescue severely damaged hearts. Clinical
evidence does not directly support this theory, but is
proceeding briskly. Studies are under way in which
skeletal myoblasts harvested from peripheral tissue and
grown in culture are injected directly into scarred
regions of the myocardium with improved ejection
fraction.129 Other ongoing approaches are using prompt
extraction of autologous mesenchymal stem cells
harvested from bone marrow, with intracoronary
delivery to the necrotic region during the acute phase of
myocardial infarction. In a well-designed study of 67
patients, this approach decreased myocardial infarct size
and improved recovery of regional systolic function;
long-term follow-up is still awaited.130

The interest and excitement that has been generated is
understandable but we still do not know whether stem-
cell regeneration is clinically meaningful. The harsh
scrutiny of clinical trials is needed, proceeding in
tandem with basic science investigations. Premature
trials could doom a promising line of work.131

Opinion 
The pipe dream can only become reality if the concept
holds under the rigours of well-designed and correctly
implemented clinical trials. 
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